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Mixed integer programming is proposed as an
approach for generating treatment plans for
brachytherapy. Two related, but distinct, mized in-
teger programming models are tested on data from
eight prostate cancer patients. The results demon-
strate that in some cases, "good" treatment plans
can be obtained in less than five CPU minutes.

INTRODUCTION

Brachytherapy is a type of radiation therapy
that involves the placement of radioactive sources
(seeds) either in tumors (interstitial implants) or
near tumors (intracavitary therapy and mold ther-
apy). In this approach radiation is emitted out-
ward and limited to short distances. Thus, unlike
external beam radiotherapy, where radiation must
traverse normal tissue in order to reach the tumor,
brachytherapy is much more localized and there-
fore reduces radiation exposure to normal tissue
while allowing an escalation in the radiation dose.
However, the "optimal" placement and dosage of
the radioactive seeds in brachytherapy is a difficult
problem.

Prior to the wide availability of computers,
strategies used to obtain reasonable dose uni-
formity throughout a region implanted with ra-
dioactive seeds included the Manchester Paterson-
Parker system [1], the Quimby system [2], and the
Paris system [3]. Although such strategies have
been, and in some cases, continue to be, useful in
determining brachytherapy treatment plans, the
use of the computer enables much more sophisti-
cated techniques to be employed. Computer aided
planning typically consists of sequentially adjust-
ing the position and/or the number and strengths
of sources within the target in order to achieve
the "best possible" fit of a desired dose distribu-
tion. Adjustments may be performed manually,
guided by repeated viewing of graphical represen-
tations of isodose and target contour representa-
tions [4], or automatically by optimization algo-
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rithms [5, 6, 7, 8, 9].

In this paper mixed integer programming (MIP)
optimization models are proposed for aiding in the
selection of treatment plans. The models are pre-
sented in Section 2, and numerical experiments
using data obtained from eight prostate cancer pa-
tients are reported in Section 3.

One potential advantage of computer-assisted
treatment planning is speed. Due to the labor
intensive nature of the traditional strategies men-
tioned above, when such strategies are used treat-
ment plans must typically be generated at least
24 hours in advance of the actual implantation of
the seeds. Unfortunately, it is often the case that
the position of the diseased organ in the operat-
ing room differs from the position in the original
CT scan. In such a case, there may be a need
to change the plan in the operating room. One
goal of an automated treatment plan system is to
be able to assist physicians and radiation physi-
cists in obtaining good treatment plans "on the
fly." Hence, it is imperative that the optimization
component of an automated system obtain solu-
tions quickly. The numerical results presented in
Section 3 show that, in some cases, "good" solu-
tions can be obtained in under 300 seconds.

OPTIMIZATION MODELS

Our basic model involves using 0/1 variables to
record placement or non placement of seeds in a
prespecified three-dimensional grid of potential lo-
cations. The locations correspond to the inter-
sections of the needles in the instrument used to
deposit seeds with the regions where the diseased
organ resides in each of a number slices (obtained
via a CT scan) of the tumor site and neighboring
healthy organs. If a seed is placed in a specific
location, then it contributes a certain amount of
radiation dosage to each of the points in the dis-
cretized representations. The dose contribution to
a point is proportional to the inverse square of the
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distance from the source. Once the grid of poten-
tial seed locations is specified, the total dose level
at each point can be modeled.

Let xj be a 0/1 indicator variable for recording
placement or non placement of a seed in grid po-
sition j. Then the total radiation dose at point P
is given by

ZD(IIP-XjII)xj, (1)
j

where Xj is a vector corresponding to the coordi-
nates of grid point j, 11 * 11 denotes the Euclidean
norm, and D(r) denotes the dose contribution of
a seed to a point r units away. The target lower
and upper bounds, Lp and Up, for the radiation
dose at point P can be incorporated with (1) to
form constraints for the MIP j_odel:

E D(IIP - XjII)xj > Lp
j

ZD(IIP-XjII)xj < Up.

Unfortunately, it is typically not possible to satisfy
all such constraints simultaneously. Indeed, due to
the inverse square factor, the dose level contribu-
tion of a seed to a point less than 0.3 units away,
say, is typically larger than the target upper bound
for the point.
One possible approach is to identify a mazimum

feasible subsystem. This is the essence of our first
MIP model. By introducing additional 0/1 vari-
ables one can directly maximize the number of
points satisfying the specified bounds. In this case,
constraints (2) are replaced by

ZD(IIP - Xj 1)xj - Lp > -Np(1 -vp)

(3)
E D(1P -Xj II)xj- Up < Mp(1 - wp),

where vp and wp are 0/1 variables, and Mp and
Np are suitably chosen positive constants. If a so-
lution is found such that vp = 1, then the right
hand side of the first inequality in (3) is zero; and
hence, the lower bound for the dose level at point
P is not violated. Similarly, if wp = 1, then
the right hand side of the second inequality in
(3) is zero; and hence, the upper bound for the
dose level at point P is not violated. In order
to find a solution that satisfies as many bound
constraints as possible, it suffices to maximize the

sum of these additional 0/1 variables; i.e., max-
imiize Zp((vp + wp). In practice, achieving the
target dose levels for certain points may be more
critical than achieving the target dose levels for
certain other points. In this case, one could mnaxi-
mize a weighted sum: Lp(apvp +,B3pwp), where
the more critical points receive a relatively larger
weight. We found that using a weighted sum was
important for the prostate cancer cases to be dis-
cussed in Section 3. Since there were substantially
fewer urethra and rectum points compared to the
number of points in the tumor, to increase the
likelihood that the former points achieved the tar-
get dose levels, a large weight was placed on the
associated 0/1 variables.
The role of the constants Np and Mp in (3)

is to ensure that there will be feasible solutions
to the mathematical model. In particular, these
constants must be chosen suitably large so that if
vp or wp is zero, the associated constraint in (3)
will not be violated.
An alternative model involves using continuous

variables to capture the deviations of the dose
level at a given point from its target bounds and
minimizing a weighted sum of the deviations. In
this case, the constraints (2) are replaced by con-
straints of the form

ZD(IP-Xj11)xj + yp > Lp

(4)
ZD(IIP-XjII)xj -zp < Up,

where yp and zp are nonnegative, continuous vari-
ables. The objective for this model takes the form:
minimize Zp(acpyp + /3pzp), where ap and /3p
are nonnegative weights selected according to the
relative importance of satisfying the associated
bounds. For example, weights associated with an
upper bound on the radiation dose for points in
a neighboring healthy organ may be given a rel-
atively larger magnitude than weights associated
with an upper bound on the dose level for points
in the diseased organ.

The target bounds Lp and Up are typically ex-
pressed as appropriate multiples of a target pre-
scription dose, Tp. Thus, another natural ap-
proach is to capture the deviations from Tp di-
rectly [10]. In our model, this can be achieved by
replacing constraints (2) with

E D(IIP-XXj I)xj + yp = Tp,
i

(5)

where yp is a continuous variable, unrestricted
in sign. One can then minimize the q norm
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of the vector y of all deviations; i.e., minimize
IIYlIlq = (Ep jyPjq)1/. We have not yet explored
this modification numerically, but mention it to
demonstrate the flexibility of our basic model.

Another enhancement that we have not yet ex-
plored, but that could be incorporated into any
of the above models, is the allowance of alterna-
tive seed types. There are a variety of radioactive
sources that are used for brachytherapy, includ-
ing cesium-137, iridium-192, iodine-125, and gold-
198, each of which has its own set of exposure rate
constants. Typically however, a single seed type
is used in a given treatment plan. This fact is, in
part, due to the difficulty of designing treatment
plans with multiple seed types. The mixed integer
programming approach would allow consideration
of multiple seed types with little additional cost;
and more importantly, the added flexibility of al-
lowing multiple seed types may have a substantial
impact on the number of points at which the tar-
get dose levels can be satisfied. To incorporate
multiple seed types one can modify the total dose
level expression (1) as

ZZE Di(IIP - Xj l)xij- (6)
Here, xij is tie indicator variable for placement or
non placement of a seed of type i in grid location
j, and Di(r) denotes the dose level contribution of
a seed of type i to a point r units away. In this
case, a constraint restricting the number of seeds
implanted at grid point j is also needed: >j xij <
1.

NUMERICAL RESULTS

Data from eight prostate cancer patients were
used to test our models. The data for a given pa-
tient include discretized representations of slices
obtained via a CT scan of the tumor site and
neighboring healthy organs (urethra and rectum),
together with prespecified target bounds for the
radiation dosage at each of the points in the rep-
resentations. In each case, the grid of potential
seed positions was specified by a radiation physi-
cist in consult with a physician. Iodine-125 was
used for the radioactive sources, with exposure
rate constants for the sources provided by the
manufacturer. Four separate categories of points
were given. Contour points specify the boundary
of the diseased organ in each of the slices. The
region determined by each boundary is populated
with uniformly spaced points, termed uniformity
points. Finally, two points representing the posi-
tions of the urethra and rectum in each slice are
specified. Table 1 summarizes the data for each

patient (Pt), giving the number of rectum points,
the number of urethra points, the number of con-
tour points, and the number of uniformity points.

Table 1. Number of Data Points by Type for each Patient

Pt Rectum Urethra Contour Uniformity
1 10 10 595 1589
2 8 8 492 1237
3 7 7 399 1104
4 6 6 308 800
5 7 7 485 1416
6 7 7 479 1620
7 9 9 433 859
8 6 6 317 821

The lower and upper bounds for each of the point
types were specified as multiples of the target pre-
scription dose of 16000 rads. These are tabulated
in Table 2.

Table 2. Lower and Upper Bound Specifications as Multiples
of Target Prescription Dose

Rectum Urethra Contour Uniformity
Lower Bound 0 0.9 1.0 1.0
Upper Bound 0.78 1.1 1.5 1.5

Numerical tests were performed using two dis-
tinct models. Model 1 utilizes constraints (3), and
Model 2 constraints (4). Various combinations of
objective function weights for each ofthe two mod-
els were tested. Here we focus on one set of weights
for each model which have provided consistent nu-
merical results.

For Model 1 we found it necessary to place rela-
tively large weights on the 0/1 variables associated
with urethra and rectum points. For the results
reported herein, the objective function weights for
the 0/1 variables associated with uniformity and
contour points were set equal to 1; and the weights
for the 0/1 variables associated with urethra and
rectum points were set equal to the number of uni-
formity points. Selecting the weights in this fash-
ion essentially ensures that the dose contribution
to urethra and rectum points will lie within the
specified bounds.

For Model 2, the objective function weights
for the 0/1 variables associated with the rectum
points were set equal to 1; those associated with
the urethra points, 100; those associated with the
uniformity points, 1; and those associated with
the contour points, to the ratio of the number
of uniform points over the number of contour
points. This selection helped in maintaining a
relatively even balance in the percentage of uni-
formity points and contour points for which the
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dose levels achieved their target bounds, while at
the same time yielding high achievement for the
urethra and rectum points.
The optimization module first reads in the data

specifying the type and location of each point, as
well as the candidate seed positions and source
exposure rate constants. Employing the modeling
language AMPL [14], the associated MIP prob-
lem instance is generated in a standard format,
which is then read by the optimization solver. The
optimization solver incorporates state-of-the-art
mixed integer programming techniques [15, 16].
In particular, we note that the solver has a fast
heuristic that is effective in quickly generating fea-
sible integer solutions.

Due to the intrinsic difficulty of solving mixed
integer programs to proven optimality, we report
only the best result obtained after running the
solver for 5 and 1 CPU minute(s) for Models 1
and 2, respectively. Model 1 required a longer run-
ning time since the associated problem instances
proved to be more difficult to obtain feasible solu-
tions. We ran both models long enough so as to
obtain between 3 and 5 integer feasible solutions.
Tables 3a and 3b show, for each patient, the per-
centage of rectum points, urethra points, contour
points, and uniformrity points for which dose level
was within the specified bounds, when the "best"
solution out of those generated was selected.

Table 3a. Solution Statistics for Model 1:
Percentage of Points Satisfying Bound Conditions

Pt Rectum Urethra Contour Uniformity
1 100 100 46 45
2 100 100 44 42
3 100 100 35 44
4 100 100 41 35
5 100 100 50 42
6 100 100 33 37
7 100 100 48 41
8 100 100 46 44

Table 3b. Solution Statistics for Model 2:
Percentage of Points Satisfying Bound Conditions

Pt Rectum Urethra Contour Uniformity
1 60 100 58 48
2 100 100 52 52
3 100 100 45 43
4 100 100 50 55
5 29 100 70 53
6 100 100 35 40
7 100 100 56 50
8 100 100 51 46

Table 4 shows a comparison of results from a
treatment plan selection method currently in use
at a regional hospital to results from Models 1 and
2. For this evaluation, an extremely fine grid of
points within each slice of the diseased organ was
used. These "region of interest points" lie within

the boundary specified by the contour points, and
are spaced less than 1 millimeter apart. The to-
tal number of region of interest points for each
patient is listed in the column labeled n. As with
the uniformity points, the lower and upper bounds
for the radiation dosage to each region of interest
point are 100% and 150% of the target dose level,
respectively. Achievement of both lower and up-
per bound criteria is reflected in Table 4; for each
method, the column labeled L (U) records the per-
centage of points achieving at least 100% (at most
150%) of target dose level.

Table 4. Comparison of Solution Statistics: Percentage of
Points Satisfying Lower/Upper Bound Conditions

Current Model 1 Model 2
Pt n L U L U L U
1 340117 96.1 46.7 95.3 55.2 92.6 53.3
2 292278 93.0 47.7 93.3 57.3 93.4 52.9
3 292278 93.2 54.5 87.5 56.0 82.8 45.8
4 167426 98.3 53.6 98.5 64.1 92.9 57.7
5 312495 96.0 41.4 96.2 52.6 95.2 50.3
6 400160 84.9 49.7 86.1 54.6 80.7 45.8
7 212043 98.0 52.8 98.8 68.2 91.3 48.3
8 226625 96.6 54.1 96.6 64.0 91.7 50.6

Observe from Table 3a that using the selected
objective function weights for the 0/1 variables as-
sociated with rectum and urethra points in Model
1 resulted in all of these points achieving their as-
sociated target dose level bounds. Although this
was not the case for Model 2 (see Table 3b), on
average, the percentages of contour points and
uniformity points satisfying the respective bounds
were higher in Model 2 than in Model 1. Note how-
ever, that whereas contour and uniformity points
are actualiy associated with model constraints, the
region of interest points are not. Hence, the region
of interest points serve as unbiased test points for
the treatment plans. With this in mind, Table 4
indicates that Model 1 performed consistently bet-
ter than Model 2 on the eight cases considered.
More importantly, Model 1 was competitive with
the current rhethod in achieving the lower bound
conditions, while consistently achieving a higher
percentage of points satisfying the upper bounds.

SUMMARY AND CONCLUSION

The goal of these preliminary studies is to ob-
tain raw measurements on the performance of the
proposed techniques. Although mixed integer pro-
grams are technically difficult to solve to optimal-
ity, discrete variables, and in particular, 0/1 vari-
ables, are powerful tools for modeling real appli-
cations. In this application, the models formu-
lated provided flexibility in choice of the number
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and type of seeds, as well as in prioritizing the
importance of dose level achievement for various
organs and tissue within the diseased area. The
results obtained indicate that integer program-
ming is a viable approach for generating treatment
plans for brachytherapy. Planned future work in-
cludes studying the effect of the objective function
weights for the various models, investigating other
MIP formulations, and applying the technique to
brachytherapy treatment for other type of cancers.
In addition, we will continue to seek effective com-
putational strategies for solving the MIP models
developed and displaying the results graphically
in terms of isodose and target contour representa-
tions, so as to facilitate physicians and radiation
physicists in obtaining good treatment plans "on
the fly."
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